SCHOOL OF COMPUTING SOFTWARE ANALYSIS
UNIVERSITY OF UTAH RESEARCH LABORATORY

ANALYSIS AND SYNTHESIS
OF
FLOATING-POINT ROUTINES

Zvonimir Rakamaric

ROADMAP

Introduction

Floating-point Research at Utah
Floating-points in SMACK Verifier
Floating-point Error Analysis
Dynamic Analysis

Static Analysis

Synthesis

N o Ok~ w0 D PE

l INTRODUCTION

FP COMPUTATIONS ARE UBIQUITOUS

i Wy 0 L g !

o & ol I ”w[ﬂﬂ% {.104M
.- w0 % S Al

o o co I S0
o w A5 NN T4
SO

=
=)

o

20 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32
Sea surface temperature (deg C)

IEEE 754 STANDARD

» Well-known floating-point standard
» Published in 1985
» Almost everyone follows it

» So why are we even talking about this?

CHALLENGES

» FP is “weird”
» Does not faithfully match math (finite precision)
» Non-associative
» Heterogeneous hardware support

» FP code is hard to get right

» Lack of good understanding

» Lack of good and extensive tool support
» FP software is large and complex

» High-performance computing (HPC) simulations
» Stock exchange

FP IS WEIRD

» Finite precision and rounding

» X +yinreals # x + y in floating-point
» Non-associative

» (X+ty)+z#EX+ (Y +2)

» Creates Issues with

» Compiler optimizations (e.g., vectorization)
» Concurrency (e.g., reductions)

» Standard completely specifies only +, -, *, /,
comparison, remainder, and square root

» Only recommendation for some functions
(trigonometry)

FP IS WEIRD cont.

» Heterogeneous hardware support
» X+ y*z on Xeon # X + y*z on Xeon Phi
» Fused multiply-add
» Intel's online article “Differences in Floating-Point
Arithmetic Between Intel Xeon Processors and the
Intel Xeon Phi Coprocessor”
» Common sense does not (always) work
» X “is better than” log(e”x)
» (e”x-1)/x “can be worse than” (e”x-1)/log(e”x)
» Error cancellation

HARD TO GET RIGHT

» Writing a simple triangle classifier is challenging
» Poor (no?) tool support in practice

» Pascal Cuoqg on John Regehr’s blog:
“The problem with floating-point is that people
start with a vague overconfident intuition of what
should work, and progressively refine this
Intuition by removing belief when they are bitten
by implementations not doing what they
expected.”

HARD TO GET RIGHT cont.

» Uintah HPC framework developers
» Advanced, senior, knowledgeable developers
» Tedious manual debugging to root-cause a floating-

point-re
» Persona
» “When

ated bug

communication (paraphrasing)
turned on vectorization my output suddenly

changed.”

» “My OpenMP program occasionally returns a
different output.”

» “I have no idea what is going on.”

REAL-WORLD EXAMPLES OF BUGS

» Patriot missile failure in 1991 (webpage)
» Miscalculated distance due to floating-point error

» Time In tenths of second as measured by the
system's internal clock was multiplied by 1/10 to
produce the time in seconds

» Inconsistent FP calculations in Uintah

Computing: floor(P/C)

(N (N
O —— Xeon
Xeon Expecting Sent Phi
L y 161 msgs 162 msgs L y
P/C =161.9999... P/C =162

floor(P/C) = 161 floor(P/C) = 162

FLOATING-POINT NUMBERS

» Sign, mantissa, exponent:
((-DNS) * 1.M * 2"E

» Single precision: 1, 23, 8
» Double precision: 1, 52, 11

FLOATING-POINT NUMBER LINE

» 3 bits for precision

» Between any two powers of 2, there are 23 =8
representable numbers

0% 1 2 4 8

16

0 2-120 o 22 23

ROUNDING IS SOURCE OF ERRORS

- 0 X Y 2

. >
Real Numbers '
0 :

AL TP T £ 1 1=

64-bit FP _ _
xX—x) -y

ROUNDING MODES

» 4 standard rounding modes
» Round to nearest (default)
» Round to O
» Round to plus infinity
» Round to minus Infinity
» Can be controlled
» For experts only

ERROR GROWS WITH MAGNITUDE

Table 2-13 Gaps Between Representable Single-Format Floating-Point Numbers

X

0.0
1.1754944e-38
1.0

2.0

16.000000
128.00000
1.0000000e+20
9.9999997e+37

nextafter(x, +)

1.4012985e-45
1.1754945e-38
1.0000001
2.0000002
16.000002
128.00002
1.0000001e+20
1.0000001e+38

Gap

1.4012985e—45
1.4012985e—45
1.1920929e-07
2.3841858e-07
1.9073486e-06
1.5258789e-05
8.7960930e+12
1.0141205e+31

FLOATING-POINT OPERATIONS

» First normalize to the same exponent
» Smaller exponent -> shift mantissa right

» Then perform the operation
» Losing bits when exponents are not the same!

FP AT UTAH

UTAH FLOATING-POINT TEAM

Ganesh Gopalakrishnan (prof)
Zvonimir Rakamaric¢ (prof)

Alexey Solovyev (alumni postdoc)
Wei-Fan Chiang (alumni PhD)

lan Briggs (staff programmer)

Mark Baranowski (MS)

Dietrich Geisler (alumni undergrad)
_lam Machado (undergrad)

Rocco Salvia (PhD)

© o N o 0 b~ W D PF

RESEARCH THRUSTS

Analysis
1. Verification of floating-point programs

2. Estimation of floating-point errors

1. Dynamic
» Best effort
» Produces lower bound (under-approximation)

2. Static
» Rigorous
» Produces upper bound (over-approximation)

Synthesis
1. Rigorous mixed-precision tuning

l SMACK VERIFIER

http://smackers.github.io

FLOATING-POINTS IN SMACK

» Support verification of properties that require
precise reasoning about floating-points

» Leverage floating-point decision procedures
Implemented in Satisfiabiliaty Modulo Theories
(SMT) solvers

» Z3 SMT solver for now
» Stable version released
» Enables verification of floating-point programs in C

» Drive research on better decision procedures
by providing benchmarks for SMT

l ERROR ANALYSIS

FLOATING-POINT ERROR

Input values: X, y

Finite precision

Infinite precision

Zip = 1:flo(x’ y) Zint = fine(X, Y)

Zfp 7

Absolute error: | zq, — ;|
Relative error: | (zq, — Zing) / Zin|

ERROR PLOT FOR MULTIPLICATION

Absolute
Error

2x10- 16~
1510718
lxlO'I‘- -

sx10-17== I

ERROR PLOT FOR ADDITION

Absolute
Error

IlO""{‘
1 i

lo-ll_,. 4

) [5 . :)
1R N
! , | |] !
: | . ' LU “ 1 ! | &~
] 1| 1) 1¥] !
- - ! ! A |
I !
lo-ll+ i. 1 ,li;"' il 1) L
! A 1 ; i:“ .I: ‘!I' .
» ~ |]
) | ' un i
Bimny® k| | "_- |)
5 d - gl '
. .
i

USAGE SCENARIOS

» Reason about floating-point computations

» Precisely characterize floating-point behavior of
Ibraries

» Support performance-precision tuning and
synthesis

» Help decide where error-compensation is
needed

» “Equivalence” checking

l DYNAMIC ANALYSIS

http://github.com/soarlab/S3FP

Efficient Search for Inputs Causing High Floating-
point Errors, PPoPP 2014

GOAL

» Finding program inputs that maximize floating-

point error

Program

Floating-point Error

Inputs

TESTING FOR FP ERRORS

E Low precision } Low precision
program result
c inputs Y | ﬁ ~_
X0& o :
xle e >| [Error calculation }
(X2 € o | @ e .

High precision Z> High precision
program result

MAIN INSIGHT

» Random testing with good guidance heuristics
can outperform naive random testing

» We propose search-based random testing for
maximizing floating-point error

Naive Search-based Max. Over
random random error approximation

0 V¥ ? V =

CONFIGURATION

» An assignment from input variables to intervals

(" configuration)
0.0 1.0
X0 ¢(eoo0000]
< 1.1 22 >
RICIYIYY Y)Y
2.3 3.3
X2 ¢(e000000] _

OUR APPROACH

» Sample inputs to find sour-spots causing high
floating-point error on program output

(configuration) X0=0.5
0.0 0.5 1.0 | X1=15

X0 ¢<(e000000] | X2=30 High
< 1.1 1.5 2.2 >—>[Program}—) floating-point
X1 ¢(eo000000 error

23 3.0 33
\X2 ¢(e000000) _

GENETIC-BASED ALGORITHM

Starting
conf.

{ sub- } sub-
conf. 1} ="""" conf. n

Candidates

;

sub-conf. k
best among

candidates

}

SUMMARY

» Guided testing overcomes some drawbacks of
previous approaches

» Improves scalability to real codes

» Precisely handles diverse floating-point operations
and conditionals

» Guided testing can detect (much) higher
floating-point errors than pure random testing

l STATIC ANALYSIS

http://github.com/soarlab/FPTaylor

Rigorous Estimation of Floating-Point Round-off
Errors with Symbolic Taylor Expansions, FM 2015

CONTRIBUTIONS

» Handles non-linear and transcendental functions

» Tight error upper bounds
» Better than previous work

» Rigorous
» Over-approximation
» Based on our own rigorous global optimizer
» Emits a HOL-Lite proof certificate
» Verification of the certificate guarantees estimate

» Tool called FPTaylor publicly available

FPTaylor TOOLFLOW

IEEE ROUNDING MODEL

Consider op(x,y) where x and y are floating-

point values, and op Is a function from floats to
reals

IEEE round-off errors are specified as
op(x,y) - (1 + eop) + dyy
For normal values For subnormal values

Only one of e,, or d,, Is non-zero:
—24 —150
leon| < 2724, |d,,| < 2

ERROR ESTIMATION EXAMPLE

» Model floating-point computation of
E = x/(x + y) using reals as
X

E:(x+y)-(1+el)°(1+82)

|€1| < €1, |€2| < €-

» Absolute rounding error is then |E — E|

» We have to find the max of this function over
» Input variables x, y
» Exponential in the number of inputs
» Additional variables e, e, for operators
» Exponential in floating-point routine size!

SYMBOLIC TAYLOR EXPANSION

» Reduces dimensionality of the optimization
problem

» Basic idea
» Treat each e as “noise” (error) variables

» Now expand based on Taylor’'s theorem
» Coefficients are symbolic

» Coefficients weigh the “noise” correctly and are
correlated

» Apply global optimization on reduced problem
» Our own parallel rigorous global optimizer called
Gelpia
» Non-linear reals, transcendental functions

ERROR ESTIMATION EXAMPLE

X

E = (1 + ey)
(x+y)-(1+e) i
expands into
E—E+6E(O)x +6E(O)x +M
- deq “1 de, °2 °

where M, summarizes the second and higher order
error terms and |eg| < €y, le;]| < €

Floating-point error is then bounded by

E-E| < a—E(O) X €1 + a_E(O) X €, +M
~ |deq “1 de, °2 :

ERROR ESTIMATION EXAMPLE

» Using global optimization find constant bounds
» M, can be easily over-approximated

» Greatly reduced problem dimensionality
» Search only over inputs x, y using our Gelpia optimizer

Vx,y.

X

0E .
6—61(0)‘

_ oE
‘E—E‘ < 6_61(0)

xX+y

X €+

< U,

.
9% 0

de,

X €, +M,

ERROR ESTIMATION EXAMPLE

» Operations are single-precision (32 bits)

‘E — E| < Uy X €35-pir TU; X €32 pit

» Operations are double-precision (64 bits)

‘E — E‘ < U X €gq—pir TUz X €ga—pit

RESULTS FOR JETENGINE

jetEngine, x; € [—5,5], x; € [-20, 5], Double Precision

;rTest results " {’_l'est results
FPTaylor (improved rounding) ! FPTaylor (improved rounding)

8x1012-

6x10-12-

SUMMARY

» New method for rigorous floating-point round-
off error estimation

» Our method is embodied in new tool FPTaylor

» FPTaylor performs well and returns tighter
bounds than previous approaches

l SYNTHESIS

http://github.com/soarlab/FPTuner

Rigorous Floating-point Mixed-precision Tuning,
POPL 2017

MIXED-PRECISION TUNING

Goal:

Given a real-valued expression and output error
bound, automatically synthesize precision
allocation for operations and variables

APPROACH

» Replace machine epsilons with symbolic
variables

S0, S1 € {€32-pit) €sa—bit}
‘E‘_E‘ S U]_XS]_‘I'UZ XSZ

» Compute precision allocation that satisfies
given error bound

» Take care of type casts

» Implemented in FPTuner tool

FPTuner TOOLFLOW

Routine: Real-valued
Expression

EXAMPLE:
JACOBI METHOD

» Inputs:
» 2X2 matrix
» Vector of size 2

» Error bound: 1le-14

» Avalilable precisions: single,
double, quad

» FPTuner automatically
allocates precisions for all
variables and operations

PERFORMANCE BENEFITS

] T I R —
(o) (o]
2 10° -
5 B O i
2 — fo) —
g o © o -
N - oo 00 -
=] o) |
% o
£ I ©]
‘q;, o
Y)
10° |- -
L | Lo
102 10°

Elapse time of mixed-precision versions (ns)

ENERGY CONSUMPTION BENEFITS

all-32 mixed

(@) sine

all-6d

all-32

mixed

{d) gaussian

all-ad

200

150

100

&0

150

100

50

0.8

0.6

0.4

0.2

0.8

0.6

0.4

all-32

mixed

(h) sine

all-64

all-32

mi=ed all-a4

{e) jetEnging

40

30

20

10

40

10

all-32

mixed

{c) maxBolt

all-6d

all-32

mixed

() eduction

all-64

200

150

100

1,000

J00

GO0

400

200

SUMMARY

» Support mixed-precision allocation
» Based on rigorous formal reasoning
» Encoded as an optimization problem

» Extensive empirical evaluation

» Includes real-world energy measurements showing
benefits of precision tuning

CONCLUSIONS

» Verification of floating-point programs
» Implemented in SMACK software verifier
» Uses SMT, bit-precise
» Estimation of floating-point errors
» Dynamic based on guided testing
» Static based on Taylor expansion and global
optimization
» Mixed-precision tuning

» Leverages static error estimation to select optimal
precision for each operation

