



**SCHOOL OF COMPUTING**  
UNIVERSITY OF UTAH



**SOFTWARE ANALYSIS  
RESEARCH LABORATORY**

# **ANALYSIS AND SYNTHESIS OF FLOATING-POINT ROUTINES**

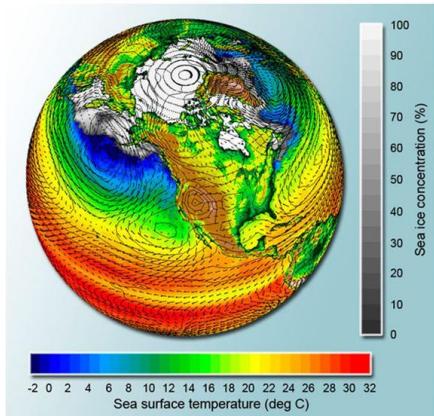
**Zvonimir Rakamarić**

# ROADMAP

1. Introduction
2. Floating-point Research at Utah
3. Floating-points in SMACK Verifier
4. Floating-point Error Analysis
5. Dynamic Analysis
6. Static Analysis
7. Synthesis

# INTRODUCTION

# FP COMPUTATIONS ARE UBIQUITOUS



| Symbol | Value | Symbol | Value  | Symbol | Value  | Symbol  | Value | Symbol | Value |
|--------|-------|--------|--------|--------|--------|---------|-------|--------|-------|
| 1      | 42.45 | 40.08  | 27.08  | 10.12  | 1.45   |         |       |        |       |
| 2      | 27.15 | 26.07  |        |        |        |         |       |        |       |
| 3      | 22.59 | 21.71  | 22.47  |        |        |         |       |        |       |
| 4      | 23.51 | 22.74  | 23.37  | -1.26  | -5.12% | 34.841M |       |        |       |
| 5      | 23.56 | 23.97  | 391.55 | +12.40 | 3.27%  | 8.842M  |       |        |       |
| 6      | 23.51 | 23.70  | 377.43 | +0.74  | 0.78%  | 1.104M  |       |        |       |
| 7      | 23.51 | 23.32  | 24.74  | +0.42  | 1.69%  | 82.022M |       |        |       |
| 8      | 23.51 | 24.09  | 24.35  | +0.30  | 1.22%  | 7.433M  |       |        |       |



# IEEE 754 STANDARD

- ▶ Well-known floating-point standard
- ▶ Published in 1985
- ▶ Almost everyone follows it
- ▶ So why are we even talking about this?

# CHALLENGES

- ▶ FP is “weird”
  - ▶ Does not faithfully match math (finite precision)
  - ▶ Non-associative
  - ▶ Heterogeneous hardware support
- ▶ FP code is hard to get right
  - ▶ Lack of good understanding
  - ▶ Lack of good and extensive tool support
- ▶ FP software is large and complex
  - ▶ High-performance computing (HPC) simulations
  - ▶ Stock exchange

# FP IS WEIRD

- ▶ Finite precision and rounding
  - ▶  $x + y$  in reals  $\neq x + y$  in floating-point
- ▶ Non-associative
  - ▶  $(x + y) + z \neq x + (y + z)$
  - ▶ Creates issues with
    - ▶ Compiler optimizations (e.g., vectorization)
    - ▶ Concurrency (e.g., reductions)
- ▶ Standard completely specifies only  $+$ ,  $-$ ,  $*$ ,  $/$ , comparison, remainder, and square root
  - ▶ Only recommendation for some functions (trigonometry)

# FP IS WEIRD cont.

- ▶ Heterogeneous hardware support
  - ▶  $x + y^*z$  on Xeon  $\neq x + y^*z$  on Xeon Phi
    - ▶ Fused multiply-add
  - ▶ Intel's online article "Differences in Floating-Point Arithmetic Between Intel Xeon Processors and the Intel Xeon Phi Coprocessor"
- ▶ Common sense does not (always) work
  - ▶  $x$  "is better than"  $\log(e^x)$
  - ▶  $(e^x-1)/x$  "can be worse than"  $(e^x-1)/\log(e^x)$ 
    - ▶ Error cancellation

# HARD TO GET RIGHT

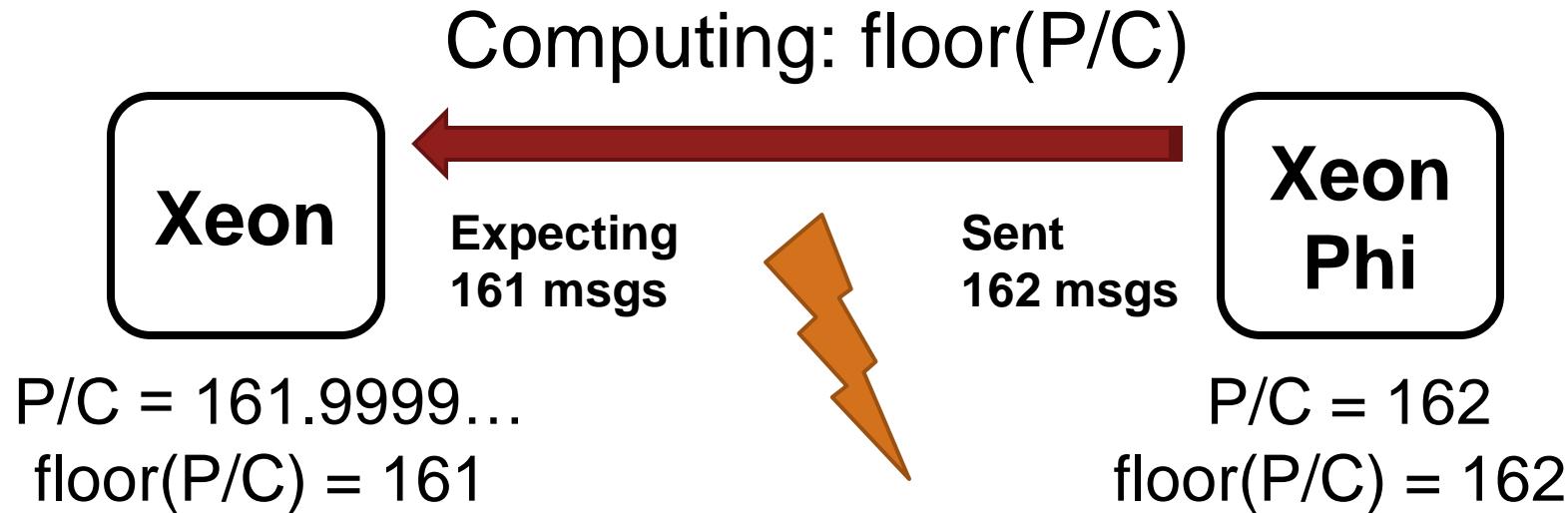
- ▶ Writing a simple triangle classifier is challenging
- ▶ Poor (no?) tool support in practice
- ▶ Pascal Cuoq on John Regehr's blog:  
“The problem with floating-point is that people start with a vague overconfident intuition of what should work, and progressively refine this intuition by removing belief when they are bitten by implementations not doing what they expected.”

# HARD TO GET RIGHT cont.

- ▶ Uintah HPC framework developers
  - ▶ Advanced, senior, knowledgeable developers
  - ▶ Tedious manual debugging to root-cause a floating-point-related bug
- ▶ Personal communication (paraphrasing)
  - ▶ “When I turned on vectorization my output suddenly changed.”
  - ▶ “My OpenMP program occasionally returns a different output.”
  - ▶ “I have no idea what is going on.”

# REAL-WORLD EXAMPLES OF BUGS

- ▶ Patriot missile failure in 1991 (webpage)
  - ▶ Miscalculated distance due to floating-point error
  - ▶ Time in tenths of second as measured by the system's internal clock was multiplied by 1/10 to produce the time in seconds
- ▶ Inconsistent FP calculations in Uintah



# FLOATING-POINT NUMBERS

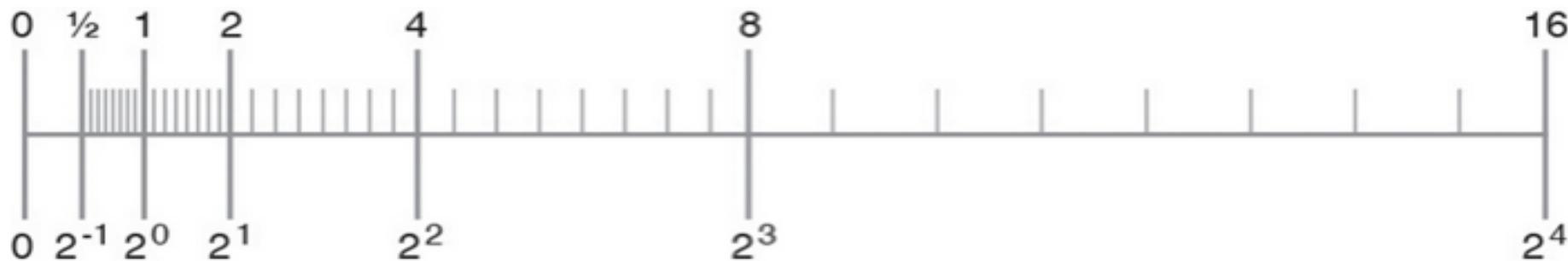
- ▶ Sign, mantissa, exponent:

$$((-1)^S) * 1.M * 2^E$$

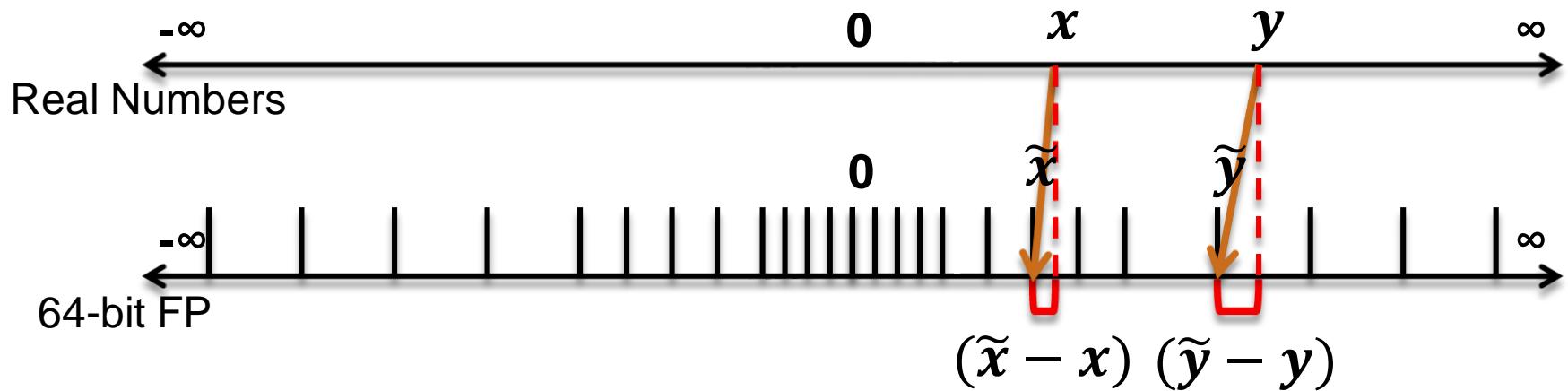
- ▶ Single precision: 1, 23, 8
- ▶ Double precision: 1, 52, 11

# FLOATING-POINT NUMBER LINE

- ▶ 3 bits for precision
- ▶ Between any two powers of 2, there are  $2^3 = 8$  representable numbers



# ROUNDING IS SOURCE OF ERRORS



# ROUNDING MODES

- ▶ 4 standard rounding modes
  - ▶ Round to nearest (default)
  - ▶ Round to 0
  - ▶ Round to plus infinity
  - ▶ Round to minus infinity
- ▶ Can be controlled
  - ▶ For experts only

# ERROR GROWS WITH MAGNITUDE

**Table 2-13** Gaps Between Representable Single-Format Floating-Point Numbers

| <b>x</b>      | <b>nextafter(x, +•)</b> | <b>Gap</b>    |
|---------------|-------------------------|---------------|
| 0.0           | 1.4012985e-45           | 1.4012985e-45 |
| 1.1754944e-38 | 1.1754945e-38           | 1.4012985e-45 |
| 1.0           | 1.0000001               | 1.1920929e-07 |
| 2.0           | 2.0000002               | 2.3841858e-07 |
| 16.000000     | 16.000002               | 1.9073486e-06 |
| 128.000000    | 128.00002               | 1.5258789e-05 |
| 1.0000000e+20 | 1.0000001e+20           | 8.7960930e+12 |
| 9.9999997e+37 | 1.0000001e+38           | 1.0141205e+31 |

# FLOATING-POINT OPERATIONS

- ▶ First normalize to the same exponent
  - ▶ Smaller exponent -> shift mantissa right
- ▶ Then perform the operation
- ▶ Losing bits when exponents are not the same!

# FP AT UTAH

# UTAH FLOATING-POINT TEAM

1. Ganesh Gopalakrishnan (prof)
2. Zvonimir Rakamarić (prof)
3. Alexey Solovyev (alumni postdoc)
4. Wei-Fan Chiang (alumni PhD)
5. Ian Briggs (staff programmer)
6. Mark Baranowski (MS)
7. Dietrich Geisler (alumni undergrad)
8. Liam Machado (undergrad)
9. Rocco Salvia (PhD)

# RESEARCH THRUSTS

## Analysis

1. Verification of floating-point programs
2. Estimation of floating-point errors
  1. Dynamic
    - ▶ Best effort
    - ▶ Produces lower bound (under-approximation)
  2. Static
    - ▶ Rigorous
    - ▶ Produces upper bound (over-approximation)

## Synthesis

1. Rigorous mixed-precision tuning

# SMACK VERIFIER

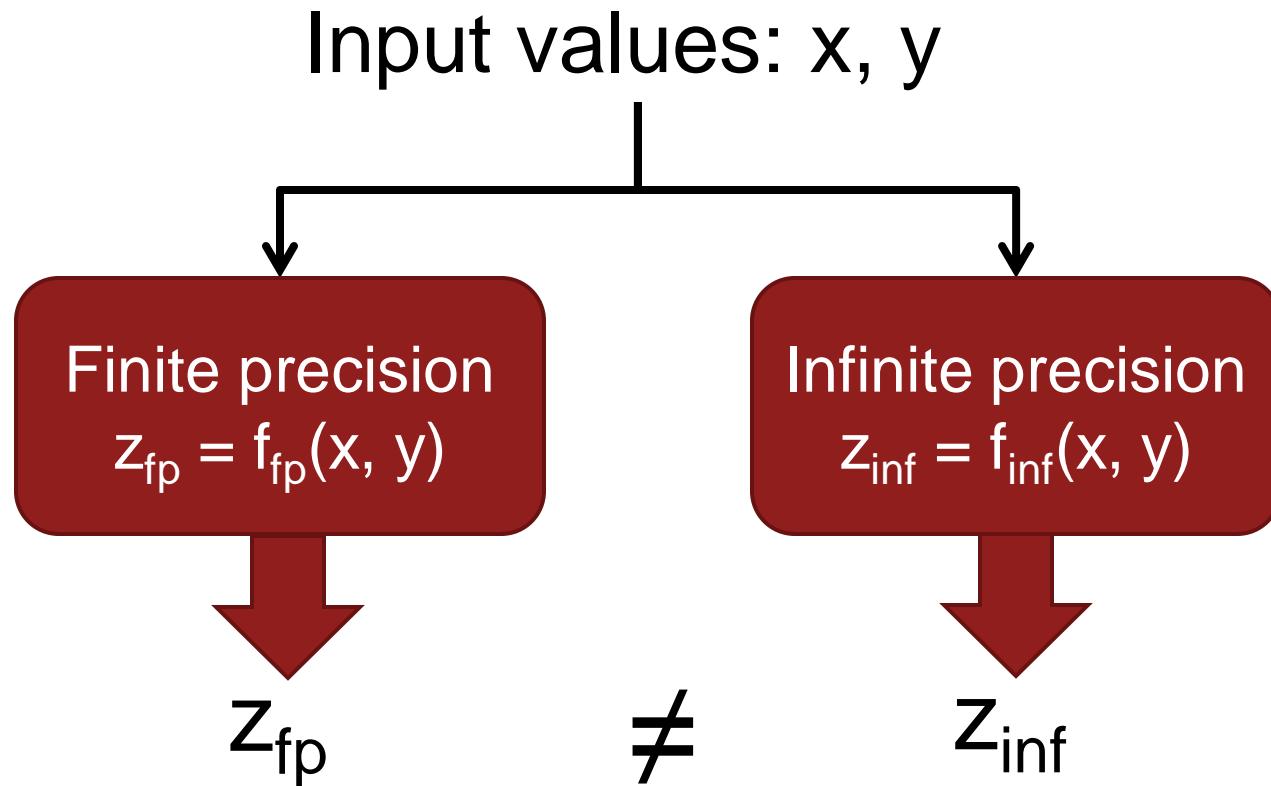
<http://smackers.github.io>

# FLOATING-POINTS IN SMACK

- ▶ Support verification of properties that require precise reasoning about floating-points
- ▶ Leverage floating-point decision procedures implemented in Satisfiability Modulo Theories (SMT) solvers
  - ▶ Z3 SMT solver for now
- ▶ Stable version released
  - ▶ Enables verification of floating-point programs in C
- ▶ Drive research on better decision procedures by providing benchmarks for SMT

# ERROR ANALYSIS

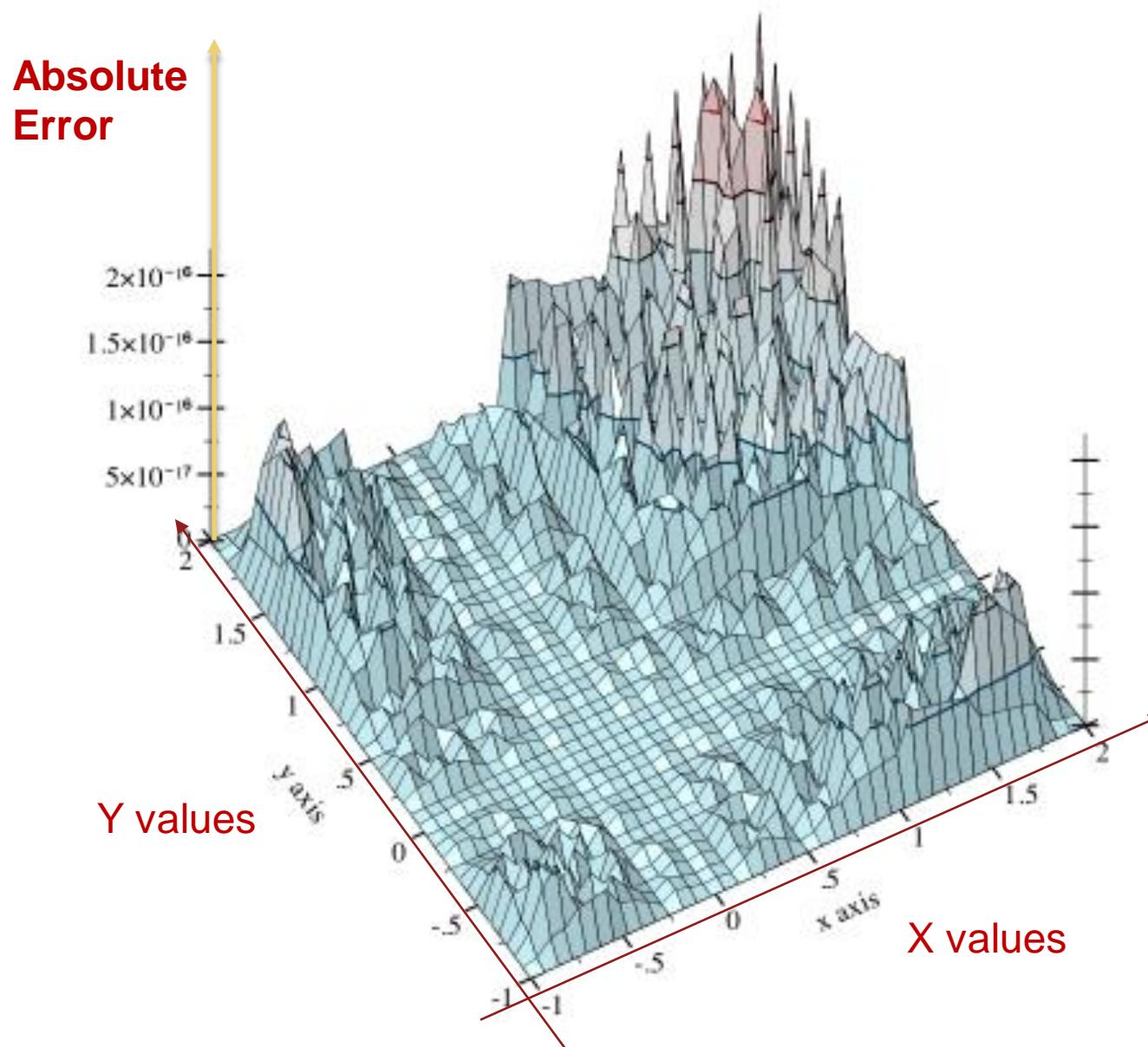
# FLOATING-POINT ERROR



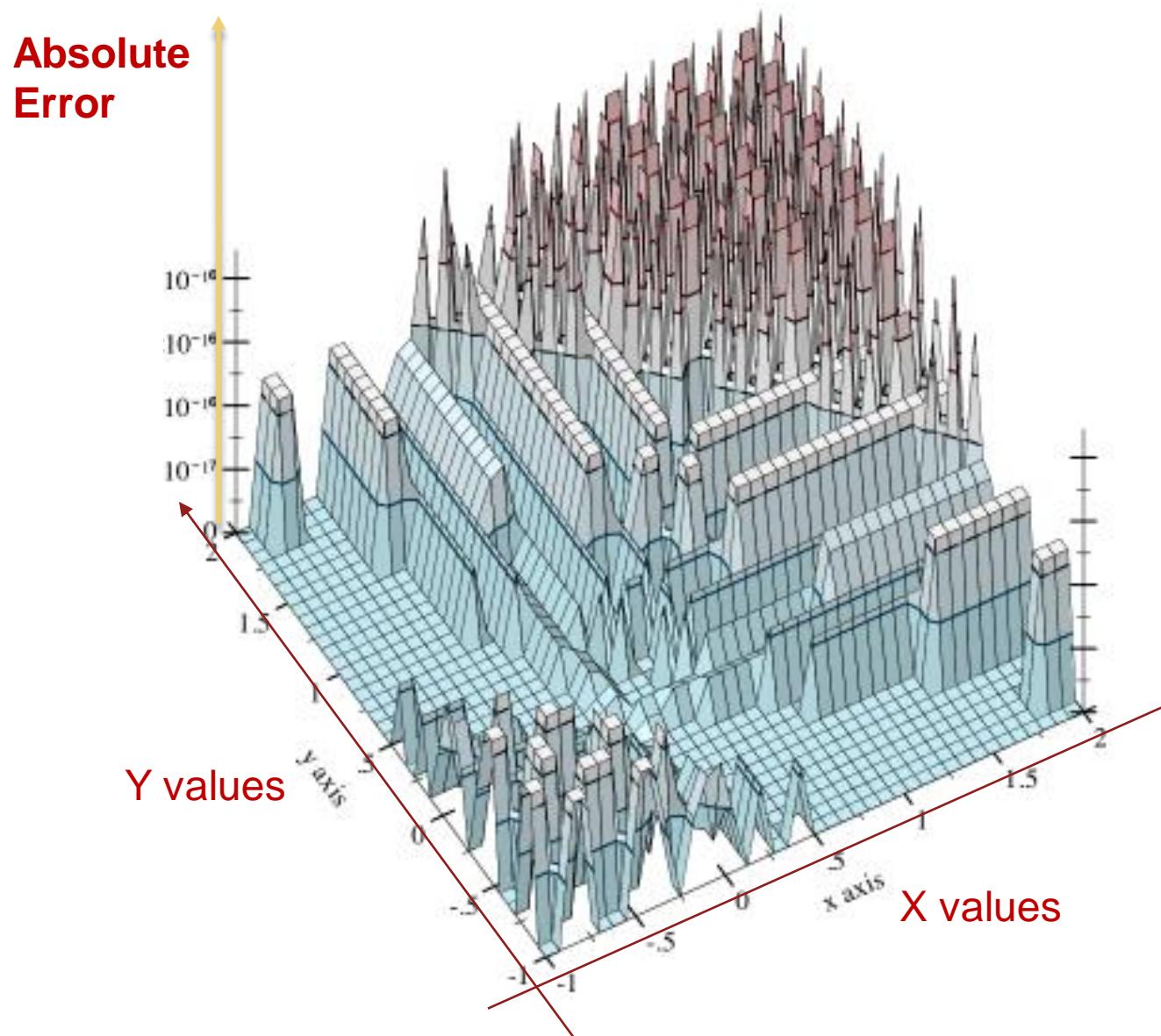
Absolute error:  $| z_{fp} - z_{inf} |$

Relative error:  $| (z_{fp} - z_{inf}) / z_{inf} |$

# ERROR PLOT FOR MULTIPLICATION



# ERROR PLOT FOR ADDITION



# USAGE SCENARIOS

- ▶ Reason about floating-point computations
- ▶ Precisely characterize floating-point behavior of libraries
- ▶ Support performance-precision tuning and synthesis
- ▶ Help decide where error-compensation is needed
- ▶ “Equivalence” checking

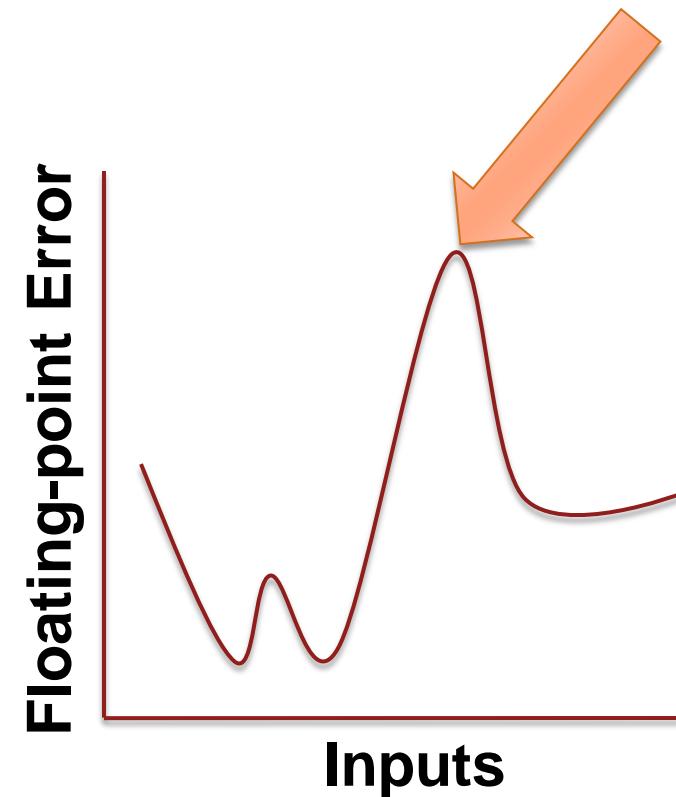
# DYNAMIC ANALYSIS

<http://github.com/soarlab/S3FP>

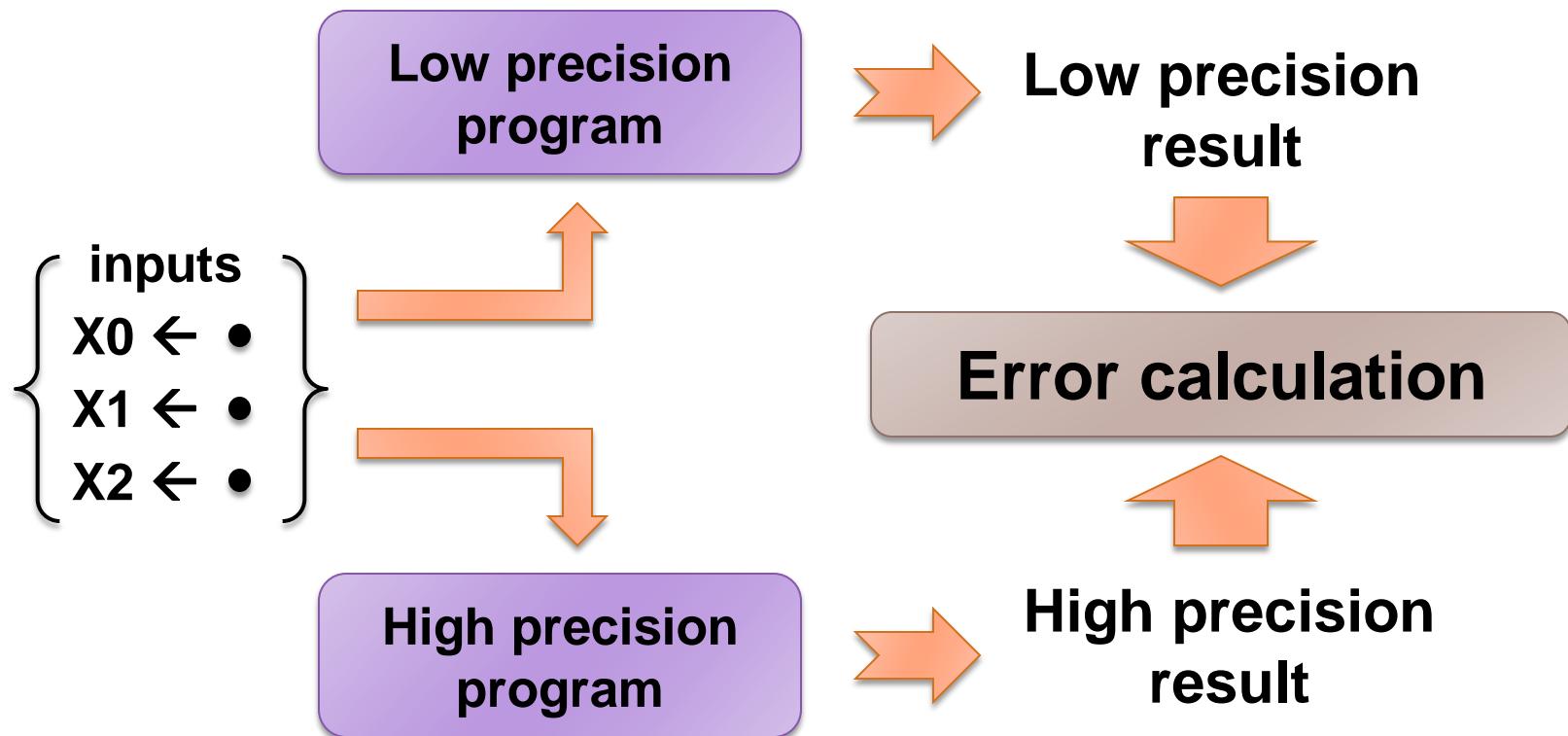
Efficient Search for Inputs Causing High Floating-point Errors, PPoPP 2014

# GOAL

- ▶ Finding program inputs that maximize floating-point error

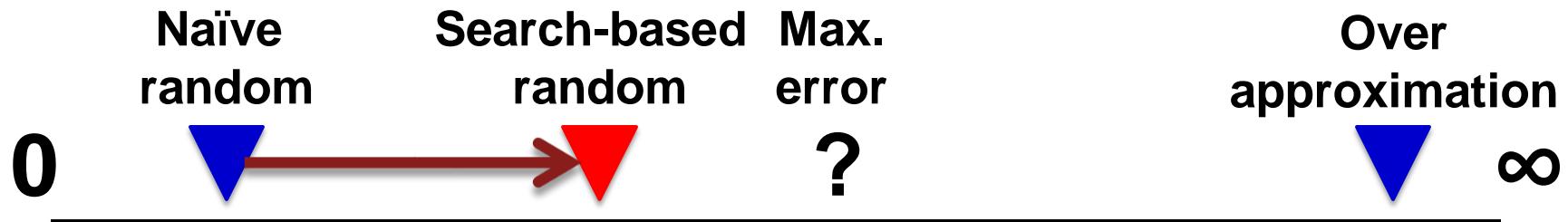


# TESTING FOR FP ERRORS



# MAIN INSIGHT

- ▶ Random testing with good guidance heuristics can outperform naïve random testing
- ▶ We propose search-based random testing for maximizing floating-point error



# CONFIGURATION

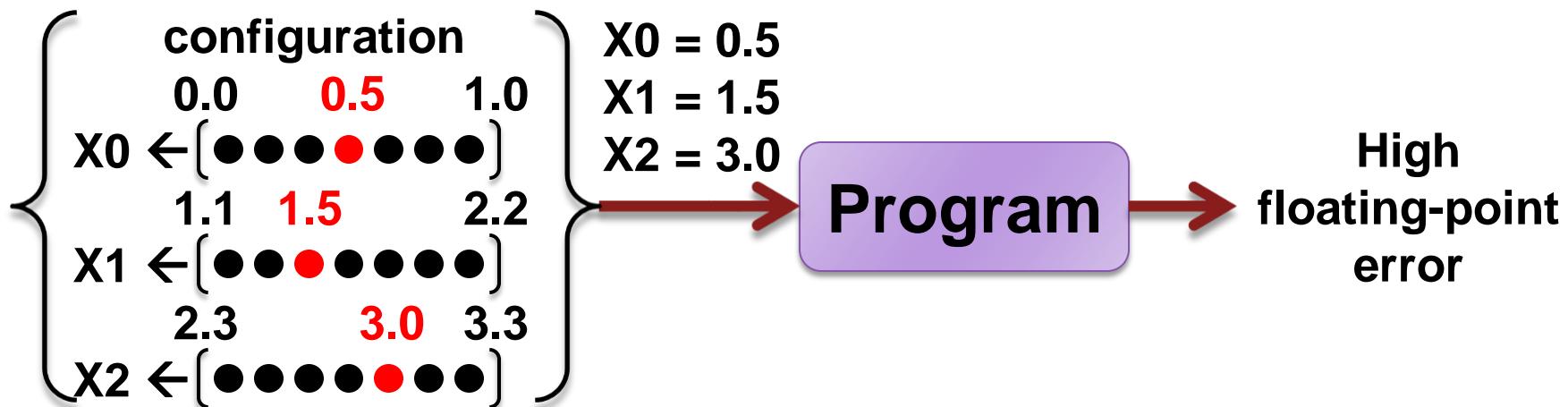
- ▶ An assignment from input variables to intervals

configuration

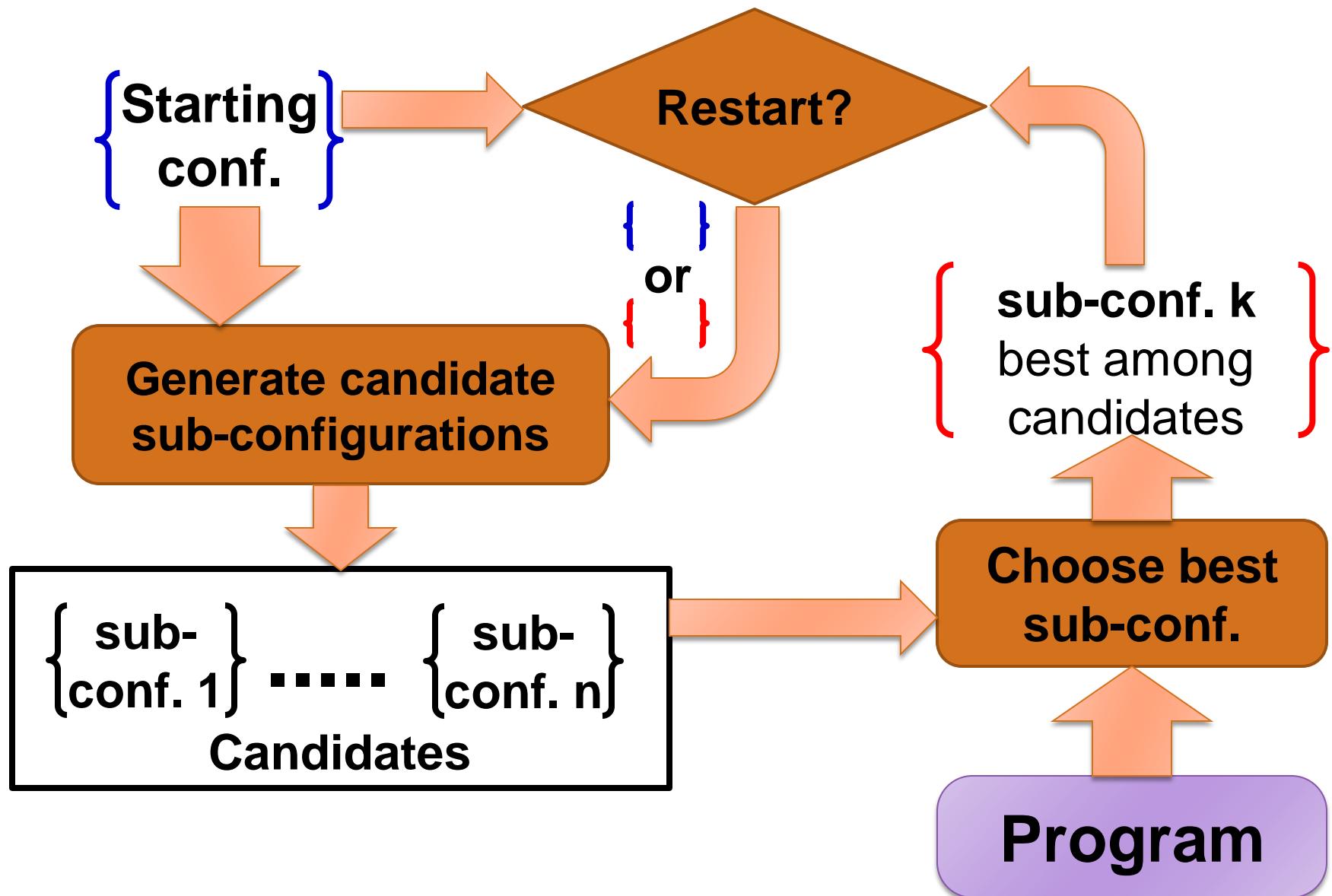
|                                                                      |     |
|----------------------------------------------------------------------|-----|
| 0.0                                                                  | 1.0 |
| $x_0 \leftarrow [● \bullet \bullet \bullet \bullet \bullet \bullet]$ |     |
| 1.1                                                                  | 2.2 |
| $x_1 \leftarrow [● \bullet \bullet \bullet \bullet \bullet \bullet]$ |     |
| 2.3                                                                  | 3.3 |
| $x_2 \leftarrow [● \bullet \bullet \bullet \bullet \bullet \bullet]$ |     |

# OUR APPROACH

- ▶ Sample inputs to find *sour-spots* causing high floating-point error on program output



# GENETIC-BASED ALGORITHM



# SUMMARY

- ▶ Guided testing overcomes some drawbacks of previous approaches
  - ▶ Improves scalability to real codes
  - ▶ Precisely handles diverse floating-point operations and conditionals
- ▶ Guided testing can detect (much) higher floating-point errors than pure random testing

# STATIC ANALYSIS

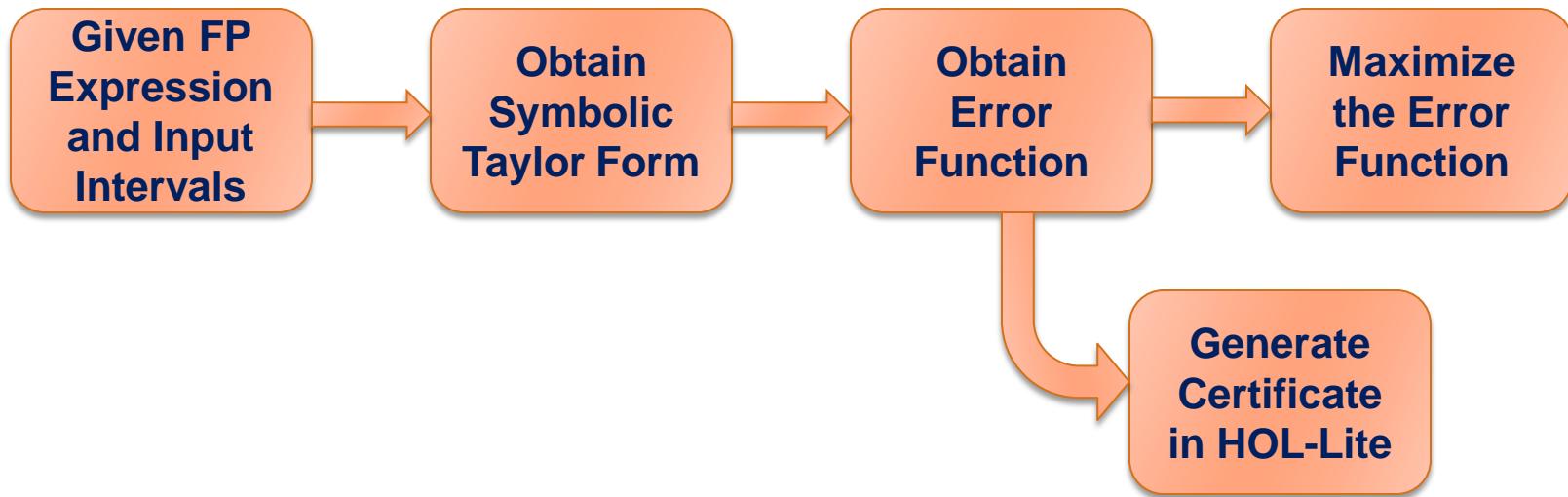
<http://github.com/soarlab/FPTaylor>

Rigorous Estimation of Floating-Point Round-off  
Errors with Symbolic Taylor Expansions, FM 2015

# CONTRIBUTIONS

- ▶ Handles non-linear and transcendental functions
- ▶ Tight error upper bounds
  - ▶ Better than previous work
- ▶ Rigorous
  - ▶ Over-approximation
  - ▶ Based on our own rigorous global optimizer
  - ▶ Emits a HOL-Lite proof certificate
    - ▶ Verification of the certificate guarantees estimate
- ▶ Tool called FPTaylor publicly available

# FPTaylor TOOLFLOW



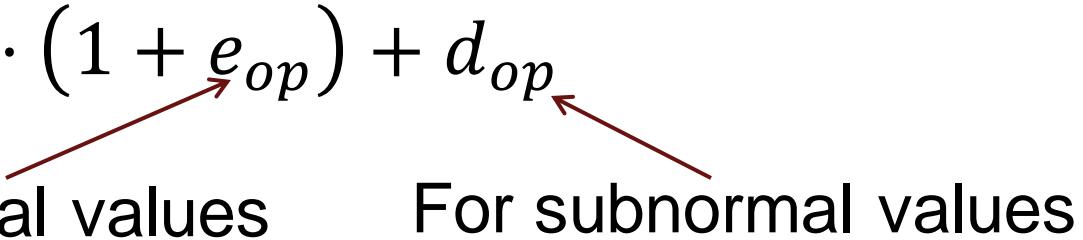
# IEEE ROUNDING MODEL

Consider  $op(x, y)$  where  $x$  and  $y$  are floating-point values, and  $op$  is a function from floats to reals

IEEE round-off errors are specified as

$$op(x, y) \cdot (1 + e_{op}) + d_{op}$$

For normal values      For subnormal values



Only one of  $e_{op}$  or  $d_{op}$  is non-zero:

$$|e_{op}| \leq 2^{-24}, |d_{op}| \leq 2^{-150}$$

# ERROR ESTIMATION EXAMPLE

- ▶ Model floating-point computation of  $E = x/(x + y)$  using reals as

$$\tilde{E} = \frac{x}{(x + y) \cdot (1 + e_1)} \cdot (1 + e_2)$$

$$|e_1| \leq \epsilon_1, |e_2| \leq \epsilon_2$$

- ▶ Absolute rounding error is then  $|\tilde{E} - E|$
- ▶ We have to find the max of this function over
  - ▶ Input variables  $x, y$ 
    - ▶ Exponential in the number of inputs
  - ▶ Additional variables  $e_1, e_2$  for operators
    - ▶ Exponential in floating-point routine size!

# SYMBOLIC TAYLOR EXPANSION

- ▶ Reduces dimensionality of the optimization problem
- ▶ Basic idea
  - ▶ Treat each  $e$  as “noise” (error) variables
  - ▶ Now expand based on Taylor’s theorem
    - ▶ Coefficients are symbolic
    - ▶ Coefficients weigh the “noise” correctly and are correlated
- ▶ Apply global optimization on reduced problem
  - ▶ Our own parallel rigorous global optimizer called Gelpia
  - ▶ Non-linear reals, transcendental functions

# ERROR ESTIMATION EXAMPLE

$$\tilde{E} = \frac{x}{(x+y) \cdot (1+e_1)} \cdot (1+e_2)$$

expands into

$$\tilde{E} = E + \frac{\partial \tilde{E}}{\partial e_1}(0) \times e_1 + \frac{\partial \tilde{E}}{\partial e_2}(0) \times e_2 + M_2$$

where  $M_2$  summarizes the second and higher order error terms and  $|e_0| \leq \epsilon_0, |e_1| \leq \epsilon_1$

Floating-point error is then bounded by

$$|\tilde{E} - E| \leq \left| \frac{\partial \tilde{E}}{\partial e_1}(0) \right| \times \epsilon_1 + \left| \frac{\partial \tilde{E}}{\partial e_2}(0) \right| \times \epsilon_2 + M_2$$

# ERROR ESTIMATION EXAMPLE

- ▶ Using global optimization find constant bounds
- ▶  $M_2$  can be easily over-approximated
- ▶ Greatly reduced problem dimensionality
  - ▶ Search only over inputs  $x, y$  using our Gelpia optimizer

$$\forall x, y. \left| \frac{\partial \tilde{E}}{\partial e_1}(0) \right| = \left| \frac{x}{x+y} \right| \leq U_1$$

$$|\tilde{E} - E| \leq \boxed{\left| \frac{\partial \tilde{E}}{\partial e_1}(0) \right|} \times \epsilon_1 + \left| \frac{\partial \tilde{E}}{\partial e_2}(0) \right| \times \epsilon_2 + M_2$$

# ERROR ESTIMATION EXAMPLE

- Operations are single-precision (32 bits)

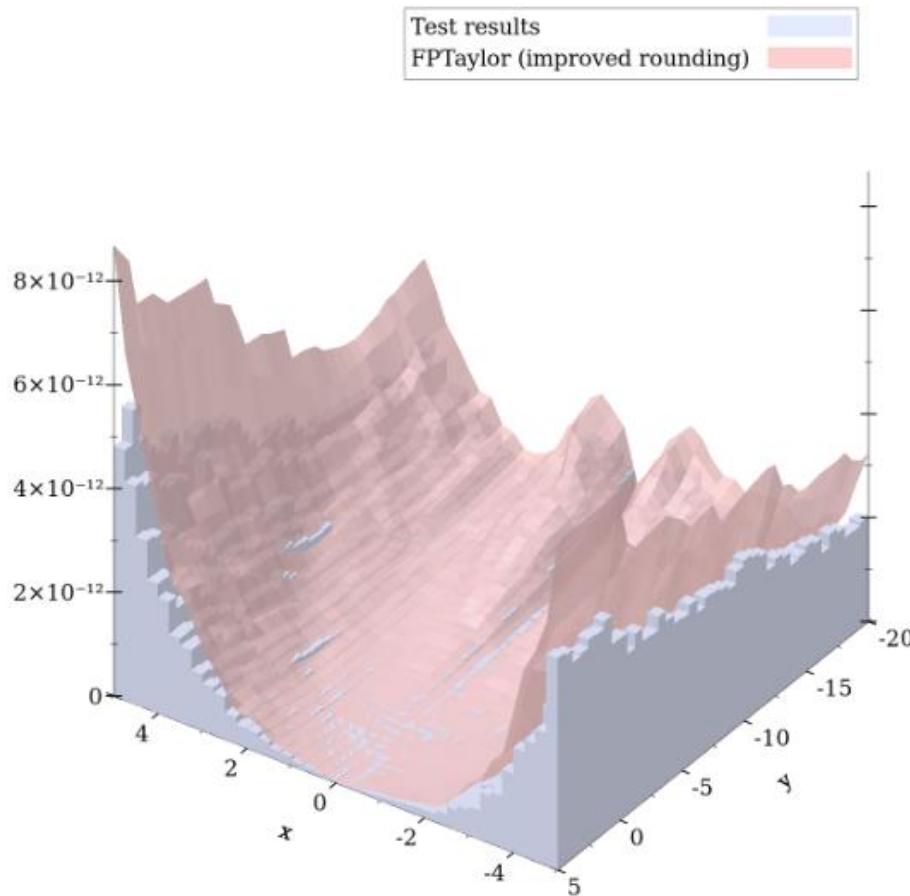
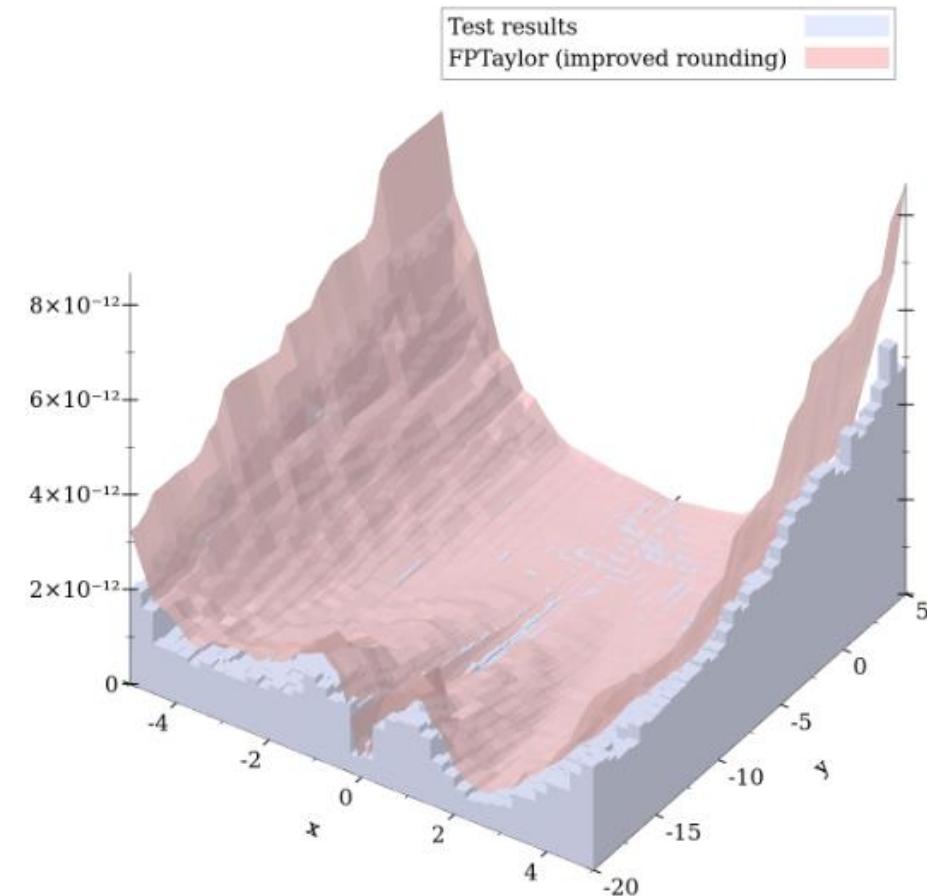
$$|\tilde{E} - E| \leq U_1 \times \epsilon_{32-bit} + U_2 \times \epsilon_{32-bit}$$

- Operations are double-precision (64 bits)

$$|\tilde{E} - E| \leq U_1 \times \epsilon_{64-bit} + U_2 \times \epsilon_{64-bit}$$

# RESULTS FOR JETENGINE

jetEngine,  $x_1 \in [-5, 5]$ ,  $x_2 \in [-20, 5]$ , Double Precision



# SUMMARY

- ▶ New method for rigorous floating-point round-off error estimation
- ▶ Our method is embodied in new tool FPTaylor
- ▶ FPTaylor performs well and returns tighter bounds than previous approaches

# SYNTHESIS

<http://github.com/soarlab/FPTuner>

Rigorous Floating-point Mixed-precision Tuning,  
POPL 2017

# MIXED-PRECISION TUNING

## Goal:

Given a real-valued expression and output error bound, automatically synthesize precision allocation for operations and variables

# APPROACH

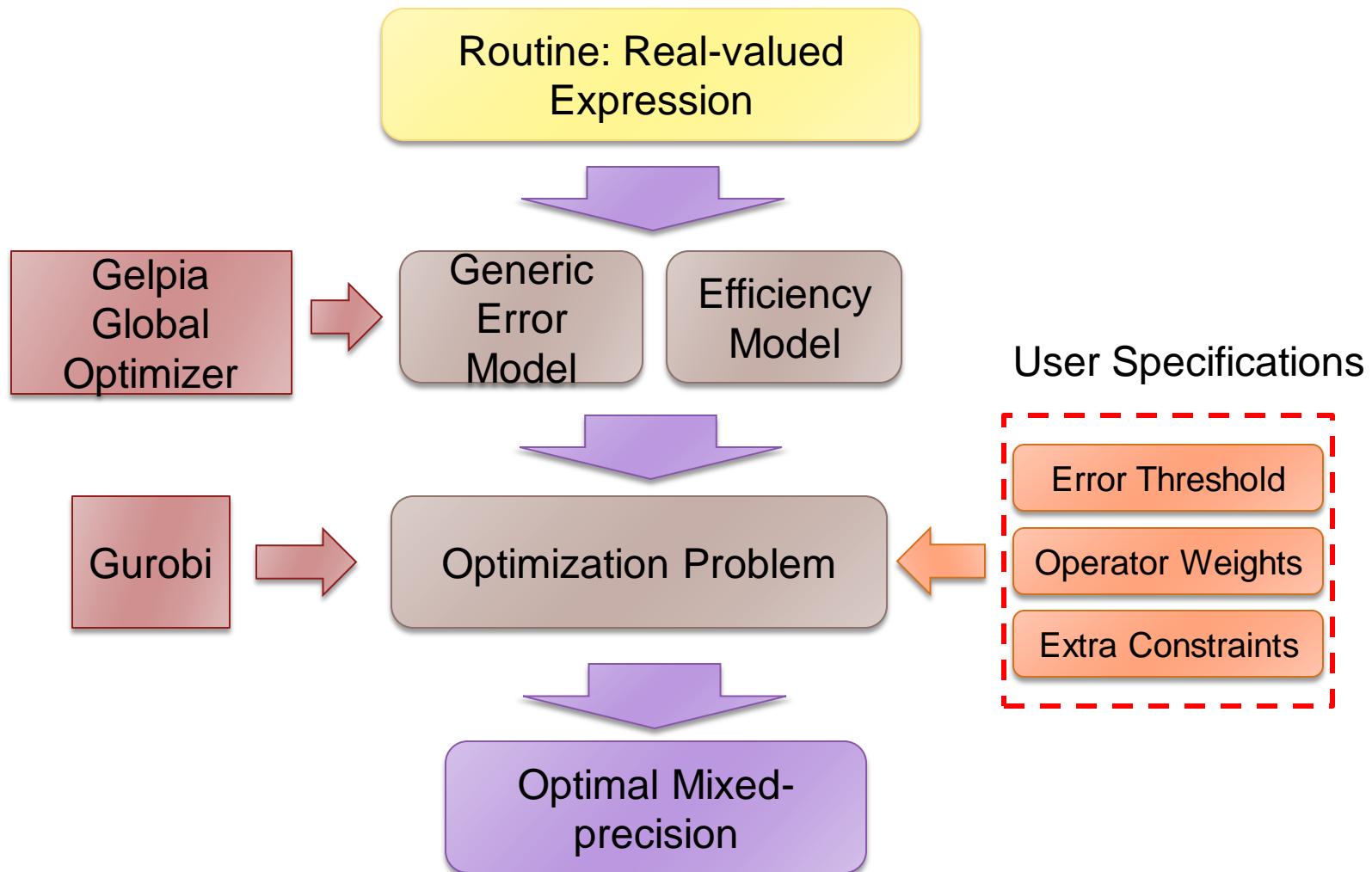
- ▶ Replace machine epsilons with symbolic variables

$$s_0, s_1 \in \{\epsilon_{32-bit}, \epsilon_{64-bit}\}$$

$$|\tilde{E} - E| \leq U_1 \times s_1 + U_2 \times s_2$$

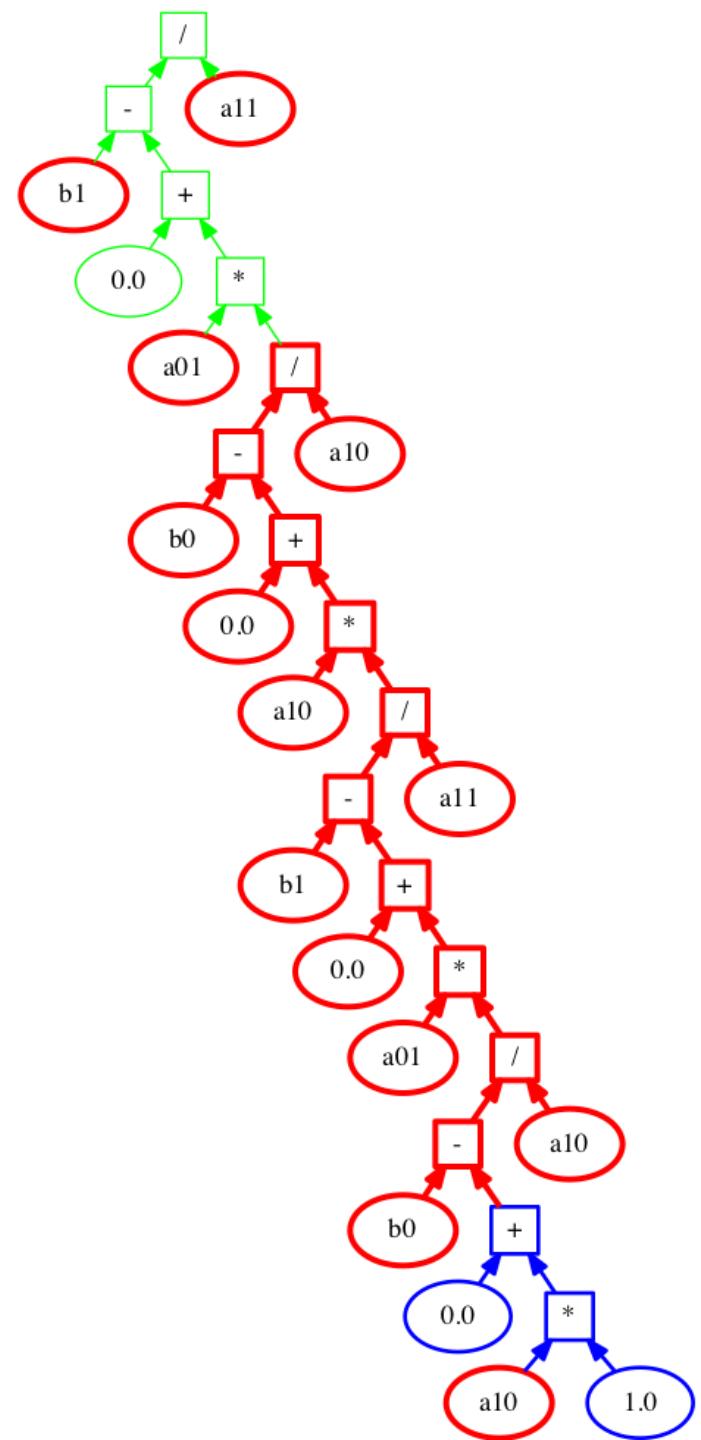
- ▶ Compute precision allocation that satisfies given error bound
  - ▶ Take care of type casts
- ▶ Implemented in FPTuner tool

# FPTuner TOOLFLOW

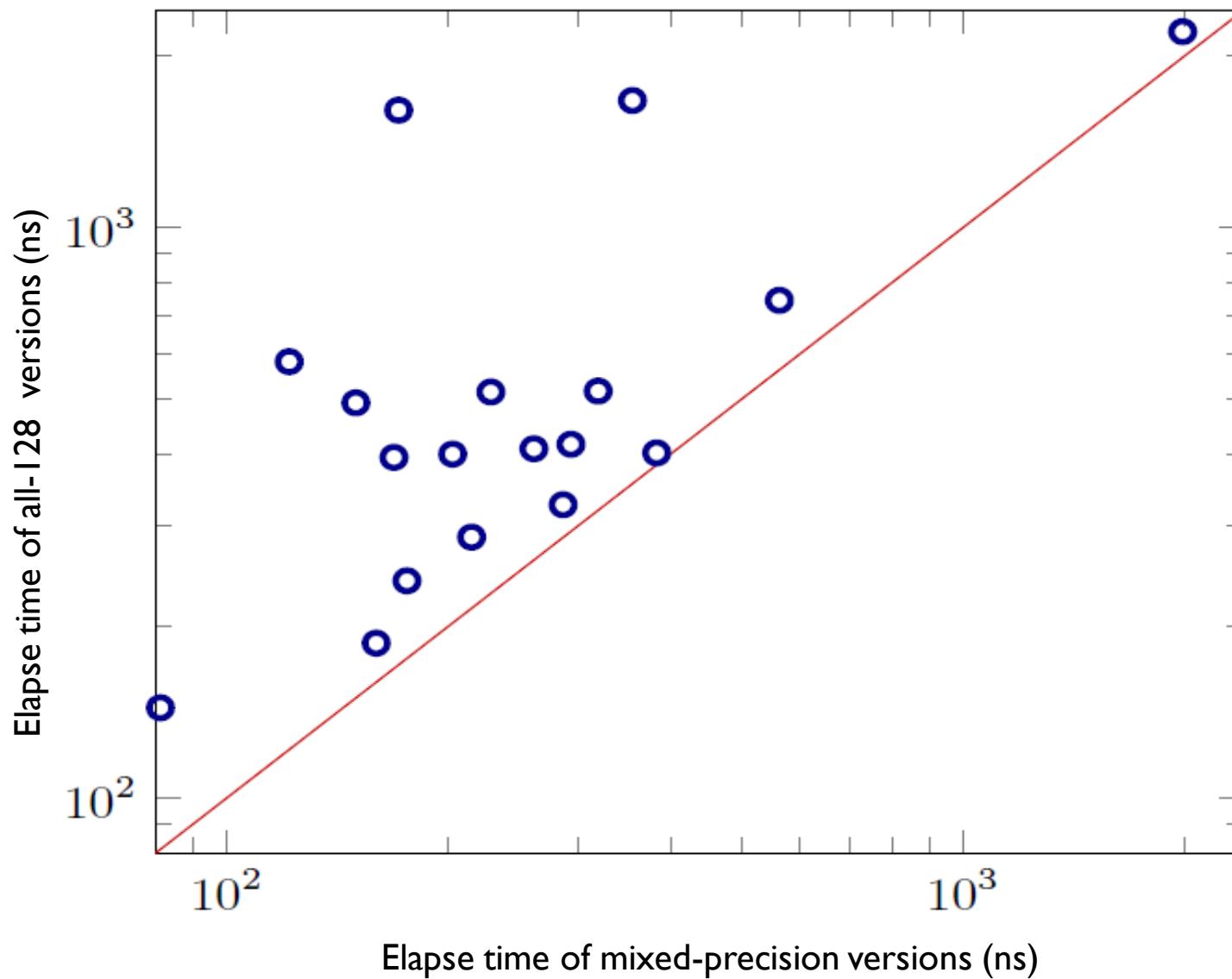


# EXAMPLE: JACOBI METHOD

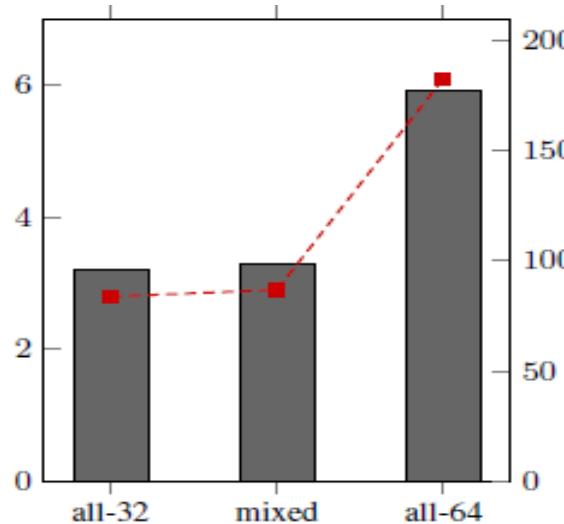
- ▶ Inputs:
  - ▶ 2x2 matrix
  - ▶ Vector of size 2
- ▶ Error bound: 1e-14
- ▶ Available precisions: single, double, quad
- ▶ FPTuner automatically allocates precisions for all variables and operations



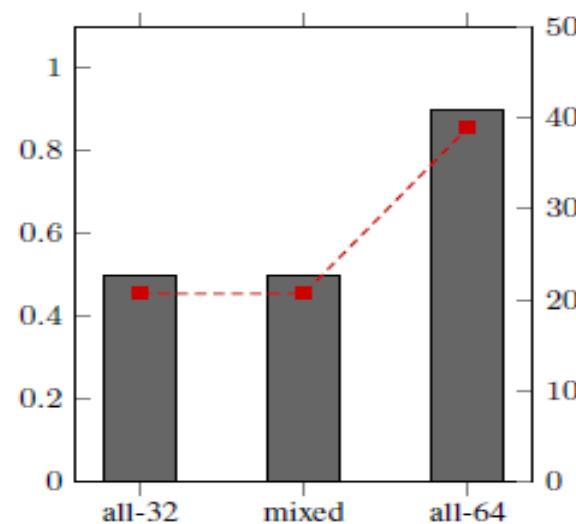
# PERFORMANCE BENEFITS



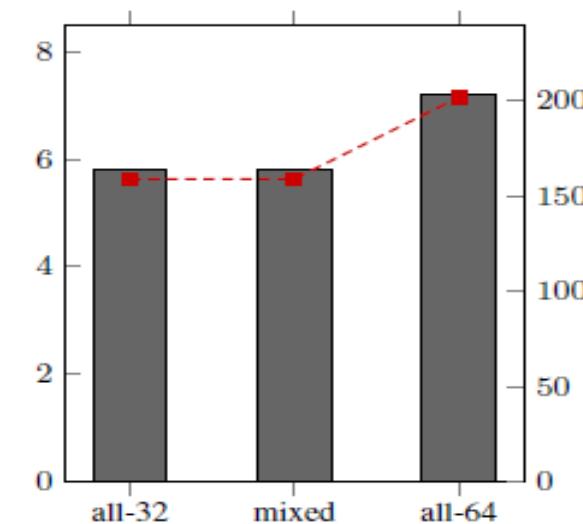
# ENERGY CONSUMPTION BENEFITS



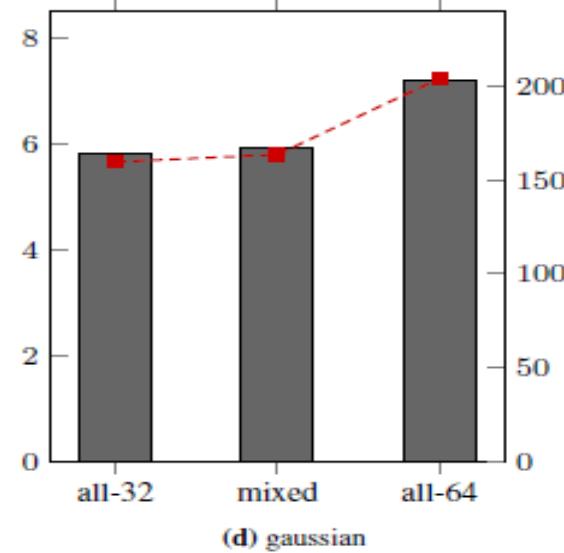
(a) sine



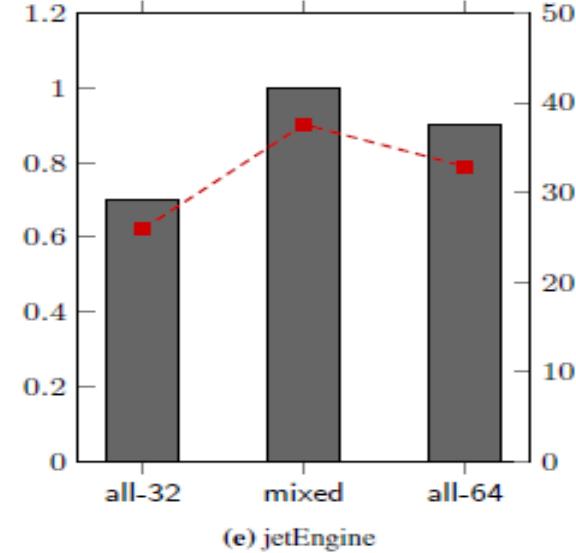
(b) sine



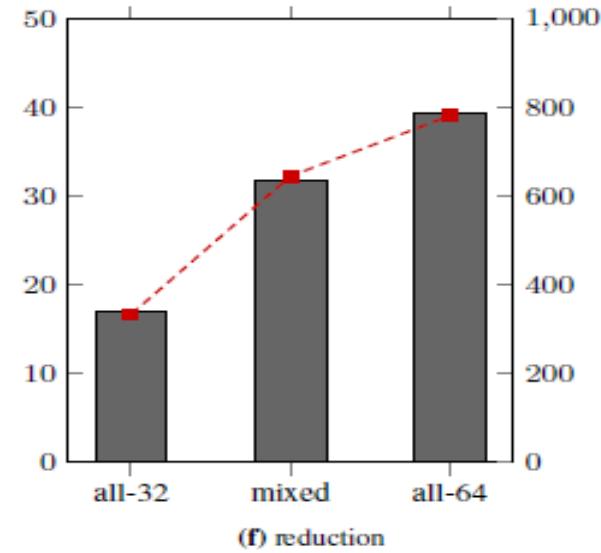
(c) maxBolt



(d) gaussian



(e) jetEngine



(f) reduction

# SUMMARY

- ▶ Support mixed-precision allocation
- ▶ Based on rigorous formal reasoning
- ▶ Encoded as an optimization problem
- ▶ Extensive empirical evaluation
  - ▶ Includes real-world energy measurements showing benefits of precision tuning

# CONCLUSIONS

- ▶ Verification of floating-point programs
  - ▶ Implemented in SMACK software verifier
  - ▶ Uses SMT, bit-precise
- ▶ Estimation of floating-point errors
  - ▶ Dynamic based on guided testing
  - ▶ Static based on Taylor expansion and global optimization
- ▶ Mixed-precision tuning
  - ▶ Leverages static error estimation to select optimal precision for each operation