
Zvonimir Rakamarić

ANALYSIS AND SYNTHESIS

OF

FLOATING-POINT ROUTINES

ROADMAP

1. Introduction

2. Floating-point Research at Utah

3. Floating-points in SMACK Verifier

4. Floating-point Error Analysis

5. Dynamic Analysis

6. Static Analysis

7. Synthesis

INTRODUCTION

FP COMPUTATIONS ARE UBIQUITOUS

IEEE 754 STANDARD

 Well-known floating-point standard

 Published in 1985

 Almost everyone follows it

 So why are we even talking about this?

CHALLENGES

 FP is “weird”

 Does not faithfully match math (finite precision)

 Non-associative

 Heterogeneous hardware support

 FP code is hard to get right

 Lack of good understanding

 Lack of good and extensive tool support

 FP software is large and complex

 High-performance computing (HPC) simulations

 Stock exchange

FP IS WEIRD

 Finite precision and rounding

 x + y in reals ≠ x + y in floating-point

 Non-associative

 (x + y) + z ≠ x + (y + z)

 Creates issues with

 Compiler optimizations (e.g., vectorization)

 Concurrency (e.g., reductions)

 Standard completely specifies only +, -, *, /,

comparison, remainder, and square root

 Only recommendation for some functions

(trigonometry)

FP IS WEIRD cont.

 Heterogeneous hardware support

 x + y*z on Xeon ≠ x + y*z on Xeon Phi

 Fused multiply-add

 Intel’s online article “Differences in Floating-Point

Arithmetic Between Intel Xeon Processors and the

Intel Xeon Phi Coprocessor”

 Common sense does not (always) work

 x “is better than” log(e^x)

 (e^x-1)/x “can be worse than” (e^x-1)/log(e^x)

 Error cancellation

HARD TO GET RIGHT

 Writing a simple triangle classifier is challenging

 Poor (no?) tool support in practice

 Pascal Cuoq on John Regehr’s blog:

“The problem with floating-point is that people

start with a vague overconfident intuition of what

should work, and progressively refine this

intuition by removing belief when they are bitten

by implementations not doing what they

expected.”

HARD TO GET RIGHT cont.

 Uintah HPC framework developers

 Advanced, senior, knowledgeable developers

 Tedious manual debugging to root-cause a floating-

point-related bug

 Personal communication (paraphrasing)

 “When I turned on vectorization my output suddenly

changed.”

 “My OpenMP program occasionally returns a

different output.”

 “I have no idea what is going on.”

REAL-WORLD EXAMPLES OF BUGS

 Patriot missile failure in 1991 (webpage)
 Miscalculated distance due to floating-point error

 Time in tenths of second as measured by the
system's internal clock was multiplied by 1/10 to
produce the time in seconds

 Inconsistent FP calculations in Uintah

Computing: floor(P/C)

Xeon

P/C = 161.9999…

floor(P/C) = 161

Xeon

Phi

P/C = 162

floor(P/C) = 162

Expecting

161 msgs

Sent

162 msgs

FLOATING-POINT NUMBERS

 Sign, mantissa, exponent:

((-1)^S) * 1.M * 2^E

 Single precision: 1, 23, 8

 Double precision: 1, 52, 11

FLOATING-POINT NUMBER LINE

 3 bits for precision

 Between any two powers of 2, there are 23 = 8

representable numbers

ROUNDING IS SOURCE OF ERRORS

0 ∞-∞

0

-∞ ∞

Real Numbers

64-bit FP

𝒙 𝒚

෥𝒚෥𝒙

(෥𝒙 − 𝒙) (෥𝒚 − 𝒚)

ROUNDING MODES

 4 standard rounding modes

 Round to nearest (default)

 Round to 0

 Round to plus infinity

 Round to minus infinity

 Can be controlled

 For experts only

ERROR GROWS WITH MAGNITUDE

FLOATING-POINT OPERATIONS

 First normalize to the same exponent

 Smaller exponent -> shift mantissa right

 Then perform the operation

 Losing bits when exponents are not the same!

FP AT UTAH

UTAH FLOATING-POINT TEAM

1. Ganesh Gopalakrishnan (prof)

2. Zvonimir Rakamarić (prof)

3. Alexey Solovyev (alumni postdoc)

4. Wei-Fan Chiang (alumni PhD)

5. Ian Briggs (staff programmer)

6. Mark Baranowski (MS)

7. Dietrich Geisler (alumni undergrad)

8. Liam Machado (undergrad)

9. Rocco Salvia (PhD)

RESEARCH THRUSTS

Analysis

1. Verification of floating-point programs

2. Estimation of floating-point errors
1. Dynamic

 Best effort

 Produces lower bound (under-approximation)

2. Static

 Rigorous

 Produces upper bound (over-approximation)

Synthesis

1. Rigorous mixed-precision tuning

SMACK VERIFIER

http://smackers.github.io

FLOATING-POINTS IN SMACK

 Support verification of properties that require

precise reasoning about floating-points

 Leverage floating-point decision procedures

implemented in Satisfiabiliaty Modulo Theories

(SMT) solvers

 Z3 SMT solver for now

 Stable version released

 Enables verification of floating-point programs in C

 Drive research on better decision procedures

by providing benchmarks for SMT

ERROR ANALYSIS

FLOATING-POINT ERROR

Input values: x, y

zfp zinf≠

Absolute error: | zfp – zinf |

Relative error: | (zfp – zinf) / zinf |

Finite precision

zfp = ffp(x, y)

Infinite precision

zinf = finf(x, y)

ERROR PLOT FOR MULTIPLICATION

X values

Y values

Absolute

Error

ERROR PLOT FOR ADDITION

X values

Y values

Absolute

Error

USAGE SCENARIOS

 Reason about floating-point computations

 Precisely characterize floating-point behavior of

libraries

 Support performance-precision tuning and

synthesis

 Help decide where error-compensation is

needed

 “Equivalence” checking

DYNAMIC ANALYSIS

Efficient Search for Inputs Causing High Floating-

point Errors, PPoPP 2014

http://github.com/soarlab/S3FP

GOAL

 Finding program inputs that maximize floating-
point error

Inputs

F
lo

a
ti

n
g

-p
o

in
t

E
rr

o
r

Program

TESTING FOR FP ERRORS

High precision

program

High precision

result

Error calculation

Low precision

program
Low precision

result

inputs

X0 

X1 

X2 

MAIN INSIGHT

 Random testing with good guidance heuristics

can outperform naïve random testing

 We propose search-based random testing for

maximizing floating-point error

∞0

Over

approximation

?

Max.

error

Naïve

random

Search-based

random

CONFIGURATION

 An assignment from input variables to intervals

1.1 2.2

X1 

0.0 1.0

X0 

2.3 3.3

X2 

configuration

OUR APPROACH

 Sample inputs to find sour-spots causing high

floating-point error on program output

Program
High

floating-point

error

1.1 2.2

X1 

0.0 1.0

X0 

2.3 3.3

X2 

configuration

0.5

1.5

3.0

X0 = 0.5

X1 = 1.5

X2 = 3.0

GENETIC-BASED ALGORITHM

Generate candidate

sub-configurations

.....
Candidates

sub-

conf. 1

sub-

conf. n

Starting

conf.

Program

Choose best

sub-conf.

Restart?

sub-conf. k

best among

candidates

or

SUMMARY

 Guided testing overcomes some drawbacks of

previous approaches

 Improves scalability to real codes

 Precisely handles diverse floating-point operations

and conditionals

 Guided testing can detect (much) higher

floating-point errors than pure random testing

STATIC ANALYSIS

Rigorous Estimation of Floating-Point Round-off

Errors with Symbolic Taylor Expansions, FM 2015

http://github.com/soarlab/FPTaylor

CONTRIBUTIONS

 Handles non-linear and transcendental functions

 Tight error upper bounds

 Better than previous work

 Rigorous

 Over-approximation

 Based on our own rigorous global optimizer

 Emits a HOL-Lite proof certificate

 Verification of the certificate guarantees estimate

 Tool called FPTaylor publicly available

FPTaylor TOOLFLOW

Given FP

Expression

and Input

Intervals

Obtain

Symbolic

Taylor Form

Obtain

Error

Function

Maximize

the Error

Function

Generate

Certificate

in HOL-Lite

IEEE ROUNDING MODEL

Consider 𝑜𝑝 𝑥, 𝑦 where 𝑥 and 𝑦 are floating-

point values, and 𝑜𝑝 is a function from floats to

reals

IEEE round-off errors are specified as

Only one of 𝑒𝑜𝑝 or 𝑑𝑜𝑝 is non-zero:

𝑒𝑜𝑝 ≤ 2−24, 𝑑𝑜𝑝 ≤ 2−150

For normal values For subnormal values

𝑜𝑝 𝑥, 𝑦 ⋅ 1 + 𝑒𝑜𝑝 + 𝑑𝑜𝑝

ERROR ESTIMATION EXAMPLE

 Model floating-point computation of
𝐸 = 𝑥/ 𝑥 + 𝑦 using reals as

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

𝑒1 ≤ 𝜖1, 𝑒2 ≤ 𝜖2

 Absolute rounding error is then ෨𝐸 − 𝐸

 We have to find the max of this function over
 Input variables 𝑥, 𝑦

 Exponential in the number of inputs

 Additional variables 𝑒1, 𝑒2 for operators

 Exponential in floating-point routine size!

SYMBOLIC TAYLOR EXPANSION

 Reduces dimensionality of the optimization

problem

 Basic idea

 Treat each 𝑒 as “noise” (error) variables

 Now expand based on Taylor’s theorem

 Coefficients are symbolic

 Coefficients weigh the “noise” correctly and are

correlated

 Apply global optimization on reduced problem

 Our own parallel rigorous global optimizer called

Gelpia

 Non-linear reals, transcendental functions

ERROR ESTIMATION EXAMPLE

෨𝐸 =
𝑥

𝑥 + 𝑦 ⋅ 1 + 𝑒1
⋅ 1 + 𝑒2

expands into

where 𝑀2 summarizes the second and higher order

error terms and 𝑒0 ≤ 𝜖0, 𝑒1 ≤ 𝜖1

Floating-point error is then bounded by

෨𝐸 = 𝐸 +
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝑒1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝑒2 +M2

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2

ERROR ESTIMATION EXAMPLE

 Using global optimization find constant bounds

 M2 can be easily over-approximated

 Greatly reduced problem dimensionality

 Search only over inputs 𝑥, 𝑦 using our Gelpia optimizer

∀𝑥, 𝑦. 𝜕෩𝐸

𝜕𝑒1
0 = 𝑥

𝑥+𝑦
≤ 𝑈1

෨𝐸 − 𝐸 ≤
𝜕 ෨𝐸

𝜕𝑒1
0 × 𝜖1 +

𝜕 ෨𝐸

𝜕𝑒2
0 × 𝜖2 +M2

ERROR ESTIMATION EXAMPLE

 Operations are single-precision (32 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖32−𝑏𝑖𝑡 +𝑈2 × 𝜖32−𝑏𝑖𝑡

 Operations are double-precision (64 bits)

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝜖64−𝑏𝑖𝑡 +𝑈2 × 𝜖64−𝑏𝑖𝑡

RESULTS FOR JETENGINE

SUMMARY

 New method for rigorous floating-point round-

off error estimation

 Our method is embodied in new tool FPTaylor

 FPTaylor performs well and returns tighter

bounds than previous approaches

SYNTHESIS

Rigorous Floating-point Mixed-precision Tuning,

POPL 2017

http://github.com/soarlab/FPTuner

MIXED-PRECISION TUNING

Goal:

Given a real-valued expression and output error

bound, automatically synthesize precision

allocation for operations and variables

APPROACH

 Replace machine epsilons with symbolic

variables

𝑠0, 𝑠1 ∈ 𝜖32−𝑏𝑖𝑡 , 𝜖64−𝑏𝑖𝑡

 Compute precision allocation that satisfies

given error bound

 Take care of type casts

 Implemented in FPTuner tool

෨𝐸 − 𝐸 ≤ 𝑈1 × 𝑠1 + 𝑈2 × 𝑠2

FPTuner TOOLFLOW

Optimization ProblemGurobi

Generic

Error

Model

Efficiency

Model

Gelpia

Global

Optimizer

Optimal Mixed-

precision

Routine: Real-valued

Expression

Error Threshold

Operator Weights

Extra Constraints

User Specifications

EXAMPLE:

JACOBI METHOD

 Inputs:

 2x2 matrix

 Vector of size 2

 Error bound: 1e-14

 Available precisions: single,

double, quad

 FPTuner automatically

allocates precisions for all

variables and operations

PERFORMANCE BENEFITS

Elapse time of mixed-precision versions (ns)

E
la

p
se

 t
im

e
 o

f
al

l-
1
2
8

ve

rs
io

n
s

(n
s)

ENERGY CONSUMPTION BENEFITS

SUMMARY

 Support mixed-precision allocation

 Based on rigorous formal reasoning

 Encoded as an optimization problem

 Extensive empirical evaluation

 Includes real-world energy measurements showing

benefits of precision tuning

CONCLUSIONS

 Verification of floating-point programs

 Implemented in SMACK software verifier

 Uses SMT, bit-precise

 Estimation of floating-point errors

 Dynamic based on guided testing

 Static based on Taylor expansion and global

optimization

 Mixed-precision tuning

 Leverages static error estimation to select optimal

precision for each operation

